Towards an algebraic natural proofs barrier via polynomial identity testing
نویسندگان
چکیده
We observe that a certain kind of algebraic proof—which covers essentially all known algebraic circuit lower bounds to date—cannot be used to prove lower bounds against VP if and only if what we call succinct hitting sets exist for VP. This is analogous to the Razborov–Rudich natural proofs barrier in Boolean circuit complexity, in that we rule out a large class of lower bound techniques under a derandomization assumption. We also discuss connections between this algebraic natural proofs barrier, geometric complexity theory, and (algebraic) proof complexity.
منابع مشابه
A Zero Knowledge Sumcheck and its Applications
Many seminal results in Interactive Proofs (IPs) use algebraic techniques based on low-degree polynomials, the study of which is pervasive in theoretical computer science. Unfortunately, known methods for endowing such proofs with zero knowledge guarantees do not retain this rich algebraic structure. In this work, we develop algebraic techniques for obtaining zero knowledge variants of proof pr...
متن کاملZero Knowledge Protocols from Succinct Constraint Detection
We study the problem of constructing proof systems that achieve both soundness and zero knowledge unconditionally (without relying on intractability assumptions). Known techniques for this goal are primarily combinatorial, despite the fact that constructions of interactive proofs (IPs) and probabilistically checkable proofs (PCPs) heavily rely on algebraic techniques to achieve their properties...
متن کاملGenerating Matrix Identities and Hard Instances for Strong Proof Systems
We study the complexity of generating identities of matrix rings. We establish an unconditional lower bound on the minimal number of generators needed to generate a matrix identity, where the generators are substitution instances of elements from any given finite basis of the matrix identities. Based on our findings, we propose to consider matrix identities (and their encoding) as hard instance...
متن کاملOn the Structure and Complexity of Symbolic Proofs of Polynomial Identities∗
A symbolic proof for establishing that a given arithmetic formula Φ computes the zero polynomial (or equivalently, that two given arithmetic formulas compute the same polynomial) is a sequence of formulas, starting with Φ and deriving the formula 0 by means of the standard polynomial-ring axioms applied to any subformula. Motivated by results in proof complexity and algebraic complexity, we inv...
متن کاملSome Closure Results for Polynomial Factorization and Applications
In a sequence of fundamental results in the 80’s, Kaltofen [Kal85, Kal86, Kal87, Kal89] showed that factors of multivariate polynomials with small arithmetic circuits have small arithmetic circuits. In other words, the complexity class VP is closed under taking factors. A natural question in this context is to understand if other natural classes of multivariate polynomials, for instance, arithm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Colloquium on Computational Complexity (ECCC)
دوره 24 شماره
صفحات -
تاریخ انتشار 2017